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Fig. 1 l—Position of shorts set for circular polarization with rec-
tangular horn removed and circular horn placed on turnstile
~=9,070 mcs.

was no canceller, and elevation where the canceller had

been set to give a 68 db cancellation. The difference

between a static measurement and a dynamic measure-

ment can be accounted for by the fact that the circu-

larity of the secondary beam breaks up at off angles due

to the diffraction of the primary beam at the edges of

the reflector surface.

Figs. 10–12 are recordings of the primary pattern

polarization as determined from the turnstile short

Fig. 12—Linear case, max. radar signal f= 9,070 mcs.

positions for optimum corner reflector cancellation.

Fig. 10 is the circular polarization with the pyramidal

horn terminating the turnstile. In order to show the

effects of this horn it was replaced with a circular horn

keeping the same positions for the shorts in the turnstile

arms. The pattern becomes elliptical to the extent of

about 1.5 db. The final figure is a plot of the linear

polarization with the pyramidal horn replaced on the

turnstile. These values were recorded at 9,070 mcs.

The polarizer looks quite successful, but it bears

more investigation. In the near future more quantitative

data will be available for a better evaluation over exist-

ing polarizing systems.

Graphical Filte~ Analysis*

HARVEL

&mvnarg—Some well known principles of filters and transmk-

sion lines are recalled and used to develop graphical methods of
analyzing Iossless transmission line filters consisting of a series of

symmetrical and identical sections. The results of this development
are used to construct a special filter analysis chart by means of

which a filter may be completely analyzed from a Smith Chart plot

of the input impedance characteristics.

INTRODUCTION

F

ILTER calculations may become quite difficult

in the microwave region where filter circuits are

constructed of transmission line sections, since

the equations involved are usually transcendental.

However the important properties of Iossless filters

consisting of a series of symmetrical sections may be
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determined graphically on a Smith chart 1,z by methods

described in this paper. These methods may also be

useful in analyzing mechanical filters in which the ele-

ments are essentially mechanical transmission lines.

It is to be noted that, while the methods presented

are particularly adapted to transmission line circuits,
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they are valid for any lossless filter consisting of sym-

metrical sections.

Let a series of identical and symmetrical filter sec-

tions having a characteristic impedance of z, and a

propagation constant of 71= cil +-jf?l per section, be

terminated in an impedance of z~ as shown in Fig. 1.

=BIEc’10N!=4sEc’’0Ni=Ew‘0’”1
All impedances Norm.llzed to zc

‘c ‘ Character, st, c Impedance of the Falter

Z.–l
~-n . —

Zn+l
(5)

for a lossless filter consisting of n sections (as in Fig. 1).

Since z. is real in the pass band of a Iossless filter,

Z. z 1 la and hence

z. = aZn = aR. + jaXm.

Thus

–1 aR. + jaXm — 1
k. .-=

2.+1 aR. + .iaXn + 1 ‘

Fig. l—Typical n-section filter. and in particular, since Z~ = 1,

Let Z*= rn +jx. be the impedance normalized to z,,
a—1

k“=—.

and

Z.—l
kn=—

Z.+1

be the voltage reflection coefficient t

a+l

Also in the pass band of a Iossless filter, I knl = I k~l ,

since ~. is imaginary, and it follows that

(aR~ – 1)2+ (aX~)2 (a – 1)2
with respect to z.,

looking into the n’h section as shown in Fig. 1. (Note
(aR~ + 1)2 + (aXJ2 = (a+ 1)2 “

that ZO= z~/z,.)

It is well known that the propagation constant of n

sections is

y. = ‘WI, (1)

and that

k. = ko exp (–27.) = ko exp (–2n7,). (2)

In general the characteristic impedance z, is complex,

as in the familiar case of a 10SSY transmission line, and

the normalized input impedances, z., n = 1, 2, . . . ,

lie on a Iogarthmic spiral about the center of the chart

as shown in Fig. 2, on the facing page. The angle be-

tween any two points is 2P and I k.1 = \ kol exp ( – 2na1).

In the pass bands of a lossless filter, z, is real,

Y1 =Jh, \ k. \ = I ko \ , and the spiral degenerates into a

circle about the center of the chart, as in the case of a

lossless transmission line.

In the rejection band of a lossless filter the opposite

extreme is encountered; z, is imaginary, 71= al, and all

of the normalized impedance points lie on a radius of

the chart and approach the center as n increases.

Note that any input impedance z. is easily determined

on a Smith chart when zL, z. and y] are known.

GRAPHICAL CALCULATION OF THE CHARACTERISTIC

IMPEDANCE OF A LOSSLESS FII.TER

Now let ZL be any real impedance, and define

Solving this equation for a gives

d R.–l
a=+ —

R.’ + X.2 – R. ‘
(6)

Now in the rejection band of a lossless filter

Z,= –j/b, since z, is imaginary, which implies that

z. = jbZ. = jbR. — bX.

and hence that

Z.—l
k.= —-----=

jbR. – bX. – 1

2.+1 jbR% – bXe + 1

(b’R.’ + b’X.’ – 1) + j(2bR.)
.

b’Rm2 + (bX. – 1)2
(7)

Thus

2bR.
Arg k. = tan-’ b2Rn2 + b’xn~ – 1 ‘

and, since ZO = 1,

2b
Arg kO = tan-l — = 2flo.

b’–l

Also, since ~n is real in the rejection band, Arg k.

=Arg kO = 2~0. Thus, equating the arguments of k. and

ko and solving for b gives

d

l–R%
b=~

R.’ + X.2 – R.
(8)

It follows from (3), (6), and (8) that

d

R.z + X.2 – R:
z.=

R.–1
(9)



7955 Dawirs: Graphical Filter Analysis

Fig. 2—Typical input impedance plots as a function of the number of filter sections.

From this expression it can be seen that Z, may be

real (in the pass band), imaginary (in the rejection

band), or may be either zero or infinite (cutoff condi-

tions) between the rejection and pass bands. The im-

pedance relations K.’ +X.2 = R. and R.= 1, correspond-

ing respectively to the two cutoff conditions, are equa-

tions of easily identified circles on the Smith chart (see

Fig. 3 on the following page), which we shall call cutoff

circles.

Further consideration of (9) shows that ZC is real

when Z. lies inside one of the cutoff circles, and is

imaginary for all Z. outside of the cutoff circles. Thus

the rejection and pass bands of the filter are easily

identified as the sections of the input impedance curve

(when normalized to the real load impedance) lying re-

spectively outside or inside of the cutoff circles. The

impedance at the cutoff frequency must lie on one of the

cutoff circles.
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Fig. 3—Cutoff circles and transformations of typical input impedance loci of a lossless filter.

As previously pointed out, the impedances z.,

n=o, 1,2, . . . in the pass band lie on a circle about

the center of tie Smith chart (Figs. 2 and 3). This

circle cuts the real axis at the points a and 1/a.

Since impedance transformations on the Smith chart

are bilinear, the impedances Z., n = O, 1, 2, “ “ . , must

also lie on a circle, which we shall call an impedance

circle. This circle cuts the real axis at the origin and at

I/a’, as shown in Fig. 3. Thus, when the input im-

pedance Z. of a filter is known at any frequency in the

pass band, the corresponding characteristic impedance

can be quickly determined by constructing the unique

impedance circle through the known impedance point.

Since the rejection band impedances z., which lie along

a radius of the Smith chart and approach the center as n

becomes large (Figs. 2 and 3), are normalized to the

imaginary characteristic impedance, Z. =jb will lie on

the rim of the chart.

The impedances Z., n = O, 1, 2, . . ., normalized to

the real load impedance, z~, all lie on an arc, which we
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shall call an im~edance a~c, and whose center lies on The attenuation due to the nth section of a Iossless

the real axis. (See Fig. 3.) They originate with 20= 1 at filter at any given frequency in the rejection band willl,

the center of the chart and proceed outward along the by (10), be

arc as n increases, approaching the point 2.= —j/b at

(

1 – IK.-,]’
which the arc intersects the rim of the chart. Thus when .4,, = 10 log

)
an input impedance is known at a given frequency in a

I–/K,,/’ ‘

rejection band, the characteristic impedance at that which may be expressed as

frequency may be quickly determined by constructing

the corresponding impedance arc on the Smith chart.
4Rn_, (R. + 1)’ + X,,z

(
.4. = Io log — —

Note that the point ZO=jb is diametrically opposite )4R. (R.–1 + 1)2 + Xn.> ‘

Z.= –j/b (see Fig. 3), and that the cutoff circles, the since

impedance circles, and the impedance arcs all belong

to the same family of circles in that they all have a Z.–l R. + .j.Y. – 1
K. = —

common tangent at the center of the Smith chart. 2,, +1= R.+jX. +1

CALCULATION OF THE ATTENUATION It may be seen that

OF A LOSSLESS FILTER
R.-l

Consider a lossless filter inserted in an infinite trans- .4n--+lolog —
R. as ‘thw’

(11)

mission line of characteristic impedance zL as shown in

Fig. 4. since

Z,L+Z. = —-j/b asnb~.
~ PI

1

Pt —

ZL Lossless
co+

Network
ZL -co It follows from

~ Pr L =Arg k., that

Fig. 4—.\ lossless network inserted in an infinite
transmission line. exp (2c11) =

ko I =1, (since ZO=jb), ancl Arg kn–1

Since the filter itself is lossless, the transmitted When expressions for Im

power stituted into this equation

that
Pt = P, – P.,

R.- I 1

where P, and P~ are the incident and reflected powers R. ‘Ik,l

]knl Im (kJ

(LzJ and Im (kn-J

from (7), it may

as %*W,

are sub-

be seen

(12)

respectively, at the input terminals of the filter: Thus

the attenuation of the filter with respect to the imped-

ance zL is

Attenuation = 10 log ~ = 10 log
1

1–;
.

1
= 10 log

1–IL]’”
(lo)

Hence the attenuation of a Iossless filter may be de-

termined from the Smith chart plot of Z.. The relation

between ] K. I and attenuation is plotted in Fig. 5. A

cursor may be calibrated to read attenuation directly
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Since all Z. at any given frequency in the pass band

lie on the same impedance circle, the maximum reflec-
Fig. 5—Attenuation of a lossless network as a function

of reflection coefficient.

tion coefficient magnitude, and hence the maximum in-

sertion 10ss, [by (10) ], will occur at the point l/cz’. since r+ approaches the center of the chart. This, to-

This insertion loss cannot be exceeded at the given gether with (11) implies that

frequency, regardless of the number of sections in the

filter. Thus the impedance circles also give insertion loss A. --+ 10 log —
l;ll

as n~m,

information in the pass band.
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Fig. 6—Typical input impedance curve of a single filter section plotted on a special filter analysis chart.

which will be referred to as the rejection per section of the

filter at the given frequency.

Thus, for a lossless filter consisting of a number of

sections, the rejection at any frequency in the rejection

band is approximately

( ];,1)?2 10 log — = 10 log —
];n\ “

This approximation is excellent for a large number

of sections or when the rejection per section is large.

FILTER ANALYSIS CHART

The methods described above can be used to analyze

a lossless filter consisting of a number of symmetrical

and identical sections from a Smith chart plot of the

input impedance when normalized to the real terminat-

ing impedance. A similar analysis of a single section will

yield the information necessary to predict the character-

istics of a filter consisting of any number of such sec-

tions. These analyses may be expedited by the use of a

chart such as is shown in Fig. 6 in which typical im-
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pedance circles and arcs, curves of constant rejection

per section, and the cut off circles are constructed as co-

ordinates superimposed on a Smith chart. When a plot

of the input impedances of a single section is normalized

to its real terminating impedance and plotted on such

a chart, the characteristic impedance, the cut off fre-

quencies, and the rejection and pass bands of a filter

consisting of any number of these sections can be read

directly from the chart and the attenuation properties

readily determined. A complete filter may be analyzed

in a similar manner.

INote that only one impedance measurement or calcu-

lation is required to analyze a filter by this method, in-

stead of the two required for the open and short circuit

method, and that when the normalized impedances

have been plotted on the filter analysis chart no further

calculations are required, since all the information is

read directly from the chart.

Note also that, since the terminating impedance zL

can have any real value, it may conveniently be equal

to the characteristic impedance of the slotted line used

to make the measurements. If the analysis is to be made

from calculated impedances, other choices of zL may

be convenient.

Fig. 7 shows the attenuation characteristics of a filter

consisting of five of the sections shown, as calculated

using the filter analysis chart and as measured on an

actual filter. The normalized input impedance is shown

plotted on the chart in Fig. 6.

Filter

Fig

Analysis

A 155y4 A155%

21

10 1700 1.9001300 15’
Frequency In mc

7—Calculated and measured characteristics of a filter
consisting of five of the sections shown.

Correction
P. D. Strum, author of “Crystal Checker for Balanced Mixers,” which ap-

peared on pages 10–15 of the July, 1954 issue of the Transactions, PGMTT,

has brought the following correction to the attention of the editors:

In the last paragraph under Matching Procedure, “ . . .62-25 . . . “ should

read ‘i . . . 65-25 . . . .7’


